Dynamic Length Factorization Machines
for CTR Prediction

Yohay Kaplan, Yair Koren, Rina Leibovits, and Oren Somekh
Yahoo Research
Haifa, Israel
{yohay,yairkoren,rina.levy,orens } @yahooinc.com

Abstract—Ad click-though rate prediction (pCTR) is one of
the core tasks of online advertising. Driving the pCTR models
of Yahoo Gemini native advertising is OFFSET - a feature en-
hanced collaborative-filtering based event prediction algorithm.
Due to data sparsity issues OFFSET models both users and
items by mapping their features into a latent space, where
the resulting user vector is a non-linear function of the user
feature vectors (e.g., age, gender, hour, etc.) which allows pairwise
dependencies. This pairwise dependencies concept is also used by
other algorithms such as the Field-aware Factorization Machines
(FFM). However, both in OFFSET and in FFM, the different
pairwise interactions are modeled by latent vectors of constant
and equal lengths. When prediction models are used online for
serving real traffic, where the total serving model size is often
limited, a non uniform representation of the pairwise interactions
should be considered in order to maximize the accuracy of
the model while consuming the same or even less space. In
this work we present a Dynamic Length Factorization Machines
(DLFM) algorithm that dynamically optimizes the length of the
vectors for each feature interaction during training, while not
exceeding a maximal overall latent vector size. After showing
good online performance of 1.46% revenue lift and a 2.15%
CTR lift, serving Gemini native traffic, the DLFM was pushed
into production. Since integrated into production, the DLFM has
not only improved the accuracy of the model by optimizing the
length of each latent space, but has also reduced the total size
of the model by 25%. Although the algorithm was applied to
OFFSET, we show that DLFM can be applied to any FFM-like
algorithm to optimize its pairwise feature vector lengths. We also
present an Educated Model Initialization - a novel mechanism for
initializing a new model based on an existing model that has
some mutual user features. Using this mechanism, we managed
to reduce the training time of our models by more than 90% when
compared to an equivalent model that is trained from “scratch”.

Index Terms—Computational advertising, Recommendation
systems, Collaborative filtering, Factorization machines, Dynamic
length optimization.

I. INTRODUCTION

Launched seven years ago and operating with a yearly run-
rate of many hundred of millions USD, Yahoo Gemini native
marketplace! is one of Yahoo’s largest and fastest growing
businesses. With more than two billion impressions daily, and
an inventory of a few hundred thousand active ads, Gemini
native serves users with ads that are rendered to resemble
the surrounding native content (see Figure 1 for examples of

ISee https://gemini.yahoo.com/advertiser/home

978-1-6654-3902-2/21/$31.00 © 2021 IEEE

Fig. 1: Yahoo Gemini native ads on different devices.

Gemini native ads on different devices). Serving native ads is
considered more challenging in general, since in contrast to
the search-ads marketplace, users’ intent during page visits are
unknown.

In order to rank native ads for an incoming users and
their specific context according to the cost per click (CPC)
price type, a score (or expected revenue) is calculated by
multiplying the advertiser’s bid and the predicted click-through
rate (pCTR) for each ad. The pCTR is calculated using
models that are generated by OFFSET - a feature enhanced
collaborative-filtering (CF) based event-prediction algorithm
[1]. OFFSET is a one-pass incremental algorithm that updates
its latent factor model for every new batch of logged data using
a gradient based learning approach. OFFSET is implemented
on the grid using map-reduce architecture [10], where every
new logged data batch is pre-processed and parsed in parallel
by many mappers and the ongoing training of model instances
with different hyper parameters sets is done in parallel by
many reducers to facilitate OFFSET adaptive online hyper-
parameter tuning process [2].

OFFSET represents its users by their features (e.g., age,
gender, geo, etc.), where each feature value (e.g., female,
male, for gender) is represented by a latent factor vector
(LFV). A user’s LFV is derived from the user features’
LFV by applying a non-linear function which allows for
pairwise feature dependencies. Originally, this function did
not distinguish between the different user features, and each
one of them was allocated with the same dimension in the
user vector LFV. In this work we consider an online dynamic

optimization of the user vector allocation by shortening some
features’ LFV and extending others, while not exceeding
a maximal predefined overall LFV length. This dynamic
length factorization machines (DLFM) algorithm changes user
vector structure between training cycles to optimize model
predictions accuracy. After providing good offline results, the
DLFM was tested in online buckets, serving Gemini native
users, and demonstrating a 1.46% revenue lift and a 2.15%
CTR lift over a regular OFFSET driven click model operating
with no LFV length optimization. Moreover, after DLFM was
deployed in production, it showed a 25% model size reduction
when compared to the baseline model. Finally, using parts
of the DLFM optimization mechanism, we also present a
new way to initialize models, that considerably expedites their
training time. In particular, the educated model initialization
mechanism utilizes mature models with similar feature set to
“seed” new models instead of training them from “scratch”
and thus saving as much as 90% of required training period
to reach a certain predefined accuracy level.

All the aforementioned mechanisms require considerable
additional backend resources, while none are required from
the serving system, which is agnostics of their operation.
This is acceptable since we are extremely sensitive to any
resources surge in the Serving system, as traffic is spread
globally among many servers for maintaining harsh service-
level-agreement (SLA) requirements. However, we are almost
agnostic to backend resources used to train our models, which
is carried out over a couple of production grids. Moreover, as
we shall demonstrate, serving resources are actually reduced
due to model size reduction achieved by DLFM.

We note that the proposed algorithms which were demon-
strated using OFFSET are applicable to similar factorization
machines (FM) based algorithm [26], such as the field-aware
factorization machines (FFM) [19][18].

The main contributions of this work are:

o The dynamic length Factorization machines (DLFM)
algorithm - a dynamic optimization of the user vector
structure which provides a better representation of each
feature and each pair of features, under a maximal vector
length constraint.

o The educated model initialization (EMI) algorithm -
an algorithm for initialization of new models base on
existing mature ones to accelerate the training period.

o The DLFM was evaluated online, serving real traffic and
demonstrating a 1.46% revenue lift and a 2.15% CTR lift
over the baseline.

o« The DLFM is deployed in production, demonstrating
model size reduction of 25% when compared to its
baseline model size with no performance degradation.

o We show that the proposed DLFM algorithm, which was
successfully applied to OFFSET, may be applied to other
FM based algorithms, such as FFM.

The rest of the paper is organized as follows. In Sections II
and IIT we provide the relevant background and related work.
We set our goal in Section IV and elaborate on our approach
in Section V. Section VI presents the offline and online

evaluation of our solution. The size reduction achieved by
applying DLFM is considered in Section VII. In Section VIII
we discuss how our approach can be applied to other FM
base algorithms. EMI is presented and evaluated in Section IX.
Finally, we conclude and consider future work in Section X.

II. THE OFFSET ALGORITHM

Yahoo Gemini native models are driven by OFFSET (One-
pass Factorization of Feature Sets): a feature enhanced
collaborative-filtering (CF) based event prediction algorithm
[1].

The pCTR of a given user v and an ad a according to
OFFSET is given by

PCTR(u,a) = o(é(u,a)) €0,1] (1)

where o(x) = (1 + e*"’”)71 is the Logistic sigmoid function,
and ¢(u,a) = b + vl v,, where v,, v, € RP denote the user
and ad latent factor vectors respectively, and b € IR denotes
the model bias. The product vy, denotes the tendency score
of user u towards ad a, where a higher score translates
into a higher pCTR. Note that © = {v,,1,,b} are the
model parameters which are learned from the logged data,
as explained below.

A. OFFSET Latent Vectors

Each user u is associated with a set of F' user-feature
values [u!,u?,...,uf’] (e.g., his gender, his age, his geo,
etc.), where u/ € N; and N; is the set of available
values for feature f (e.g., if f denotes gender, then uf €
{male, female, unknown}). Each value uf is represented by
a unique latent vector vjj , and the user vector v, is a function
of the vectors [vl,v2,...,vF]. In a similar manner, each ad a
is also associated with a set of A ad-features values (e.g., the
ad id, the campaign id, the advertiser id, the ad category, etc.),
and the vector v, is a function of the vectors [v},v2, ..., v4].
However the construction of the user latent vector and the ad
latent vector are quite different.

a) The User Vector: The construction of the user latent
vector given its different user-feature vectors is more complex
in order to allow non-linear pairwise dependencies between
feature pairs. The user vector v, € IRP is a concatenation of
((5) + F) “blocks” of size k, i.e., D = ((}) + F) - k. Each
block is dedicated to either a combination of two features ((};)
of the blocks), or a single feature (the rest F' blocks)?. Each
feature vector vfl € R4, where d = F - k, has one block of
k entries that is attributed to that specific feature only, and
(F — 1) blocks each of size k that are overlapping with the
rest (F'—1) features in the user vector. While constructing the
user vector, each block of the feature vector is mapped to the
appropriate block in the user vector. Now, let 7/ € IRP be an
extension of v, such that the entries of v/ appear in d of the
entries of @/ according to the user vector mapping, and the
rest of the entries are filled with 1’s. Using this notation we

2For simplicity we set both, pair vectors and single vectors, to have equal
dimension k, however, in practice they may be set to different dimensions k;
and ks.

O
(1
k{ 1 } fuxf, block
- 1 !
v,]:‘ v,’:’ 1:,{3 1
1 fiXf3 block
1 ! !
1
i 1 f2Xf3 block
¢ —> 24 5 1 ' 1 |
= Bl 1 1 f1 block
1 1 ||
1 1
1 1 f2 block
1 1 B
1 1
1 1 f3 block
1 1

L

Fig. 2: Example of a user latent factor vector construction for
or =3, k=3.

can now formulate the user vector, which is given by v, =
H?zlf){: . An illustration of the user vector construction is given
in Figure 2.

We end by emphasizing the advantage of presenting users
by their features over the standard CF approach where each
user is assigned with a unique LFV. Hence, the model includes
only O(F') feature LFVs instead of hundreds of millions of
unique user LFVs and user cold start problem is avoided (see
[5]1[9][11] and references therein).

b) The Ad Vector: In the ad space, each vector vfl is of
length D, and the ad vector v, € IRP is a simple summation

; . A
of its feature values’ vectors, i.e., v, =) ;" V..

B. Training

To learn the model parameters ©, OFFSET minimizes the
logistic loss (LogLoss) of the training data set 7 (i.e., past
skips and clicks) using one-pass stochastic gradient descent
(SGD)

argmin Z L(u,a,y) ,

(u,a,9)€T

where
E(U, a, y) = 7(1 - y) 1Og (1 - pCTR(U, GJ))

A 2
— ylogpCTR(u,a) + 5 9%;)9 ,

y € {0,1} is the click indicator for the event involving user u
and ad a, and A is the L2 regularization parameter. For each
training event (u,a,y), OFFSET updates its relevant model
parameters by the SGD step

0« 6— T}(G)VQE(U,a,y) ;

where VyL(u,a,y,t) is the gradient of the objective function
w.r.t 6. In addition, the parameter-dependent step size is given
by
1
n(6) = mo 5
o+ (S ager | 7oL a,y)))

where 79 is the SGD initial step-size, o, 3 € IRT are the
parameters of the adaptive gradient (AdaGrad) algorithm [12],
and 7 is the set of training events seen so far. OFFSET updates
its model incrementally for every new batch of logged events
(e.g., 15 minutes worth of data), and periodically sends its
model to the serving system.

The OFFSET algorithm also includes an adaptive online
hyper-parameter tuning mechanism [2]. This mechanism takes
advantage of the system parallel architecture and strives to tune
OFFSET hyper-parameters (e.g., step size and AdaGrad param-
eters) to match the varying marketplace conditions (changed
by temporal effects and trends). We note that other components
of OFFSET, such as its weighted multi-value feature [6],
and similarity weights used for applying “soft” recency and
frequency rules® [3], are not presented here for the sake of
brevity.

C. Serving

When a user arrives at a Yahoo owned and operated (0&O)
or Syndication4 site, and a Gemini native slot should be
populated by ads, an auction takes place. Initially, Serving
generates a list of eligible active ads for the user as well as
each ad’s score.

The score is a measure that attempts to rank the ads
according to their potential revenue with respect to the arriving
user and her context (e.g., day, hour, site, device type, etc.).
In general, an ad’s score is defined as

rankingScore(u, a) = bid(a) - pCTR(u, a) ,

where, pCTR(u,a) is the predicted click probability (see
Eq. (1)), and bid(a) is the amount of money the advertiser
is wiling to pay for a click on ad a. In order to calculate
pCTR(u,a), the serving system fetches the bias b, constructs
the user vector v, = H?Zlﬁ{:, constructs the ad vector
Vg = Zle v, and applies (1) to get the click prediction,
for all eligible ads.

To encourage advertiser truthfulness, the cost incurred on
the winner of the auction is according to generalized second
price (GSP) [13], which is defined as

rankingScore,

e —_— b'd =
&P rankingScore; '

where indices 1 and 2 correspond to the winner of the auction
and the runner up, respectively. Note that by definition gsp <
bid;, which means the winner will pay no more than its bid.
In particular, if both ads have the same pCTR, the winner will
pay the bid of the runner-up (i.e., bids).

ITI. RELATED WORK AND PRACTICE

There are few published works describing models driving
web scale advertising platforms. In [24] lessons learned from
experimenting with a large scale logistic regression model used
for CTR prediction by Google advertising system are reported.

3How frequent and how recent a user may be presented with the same ad
or campaign.

4Where Yahoo presents its ads on a third party site and shares the revenue
with the site owner.

These include improvements in traditional supervised learning
based on a follow the regularized leader like online learning
[23], and the use of per-coordinate learning rates. A model
that combines decision trees with logistic regression is used
to drive Facebook CTR prediction and is reported on in [16].
Placing ads in a tweet stream is considered in [21], where
pairwise ranking is used to train a model for CTR prediction.

Recommendation technologies are crucial for CTR predic-
tion, and without them users will find it hard to navigate
through the Internet and get what they like. In particular,
collaborative filtering (CF) in general and specifically matrix
factorization (MF) based approaches are leading recommenda-
tion technologies, according to which entities are represented
by latent vectors and learned by users’ feedback (such as
ratings, clicks and purchases) [20]. MF-CF based models are
used successfully for many recommendation tasks such as
movie recommendation [7], music recommendation [4], ad
matching [1], and much more. CF is evolving constantly,
where recently it was combined with deep learning (DL) for
embedding entities into the model [15].

Factorization machines (FM) provides a framework which
captures many MF-CF architectures that were considered over
recent years [26]. In particular, OFFSET may be seen as
a special case of FM. OFFSET is also closely related to
FFM [19][18] and FWFM [25]. However, it is fundamentally
different than FFM and FwFM, since those treat the ad side as
a regular field, while in OFFSET the ad side field is unique and
is multiplied by the user features pair and single k dimensions
LFVs. Hence, the resulting score is a sum of triplet and pair
multiplications as oppose to the pair multiplications only of
FFM and FwFM.

Similar ideas of feature vector allocation and model size
optimization were considered (in parallel to our efforts) in
[27]. In this work the primary component analysis (PCA) is
used for size reduction in a unified framework referred to as
FM?. It is noted that while FM? algorithm was tested in offline
using public datasets, our DLFM algorithm is embedded in a
commercial advertising system and is online evaluated in Web
scale serving real traffic. Moreover, while FM? uses a proxy
(i.e., PCA) for pruning its vectors, DLFM uses LogLoss, which
is the actual metric used to train the model parameters. Finally,
DLFM is an online algorithm which is capable of adapting to
temporal affects and trends, while FM? in its current form
optimizes the sizes which are then used in the actual model
train. It is worth mentioning that dimension reduction is also
considered for deep learning models in various settings (e.g.,
see [29], [17], [8] and references therein).

Model size optimization is a common practice in the process
of building CF-MF recommender systems, and it is done as
part of the algorithm hyper parameter tuning. Accordingly,
models are trained offline with increasing dimensions until
the residual performance lifts are small enough. The DLFM
algorithm presented here is novel since it is done online and
it allows non-uniform feature structure, where each feature
and feature pair establishes its “correct” dimension over time
while improving prediction accuracy. Moreover, we show that

ﬁ{l ﬁfz ~u3 ‘Vu
(1
1;51 ”f 17‘{3 kixz i fixf2 block
— ks {7 1 | > f1xfs block
1
m B kax3 1 f2Xf3 block
B | — - :
-~ W ks 1 i = £, block
ko2 1 1 £ block
1 1
ks 1 1 fs block
1 1

Fig. 3: An example of a nonuniform user vector allocation
after applying the DLFM algorithm. Observing feature fs, it
is evident that 2 entries were removed from the block repre-
senting its interaction with f;, while the block representing its
interaction with f5 has been expanded. In addition, the block
representing f3 alone remains unchanged.

DLFM is applicable to other popular FM based algorithms
such as FFM. As far as we are aware, there is no work that
considers such a dynamic optimization process.

IV. OUR GOAL

Being a major component of any web scale online ad-
vertising system, the event prediction model (e.g., ad click
prediction model) and in particular its size plays a crucial
role. Focusing on MF-CF models (such as OFFSET) the LFV
size affects many of the system performance measures such
as the training time, memory consumption, serving delay, and
number of queries (or auctions) per second (QPS) it can
handle. As described in Section II the size of the model is
dictated by the length of the user vector D = ((1;) + F) - k.
Hence, in order to reduce the size of the model without
removing existing features, the parameter k£ should be reduced.
Our goal is to take the optimization a step farther. As the
different user features hold different informative value, using
a uniform block size k to represent each of the features and
their interactions in the user vector, prevents the model from
reaching its full potential. Let ky, denotes the block size
assigned to feature f; in the user vector, and ky, r, denotes the
block size assigned to the interaction of f; and f; in the user
vector. Our goal is to dynamically optimize the values ky,, and
ky, s, for every i, j. By allowing non uniform blocks sizes, not
only that we can reduce the model size, but we would also
improve the model accuracy by finding the right combination
of features that provides the best user representation.

In this work we suggest a dynamic approach for optimizing
the user vector allocation automatically with respect to the
online data as well as a solution to the problem of adding
new features to an existing allocation. An example of a user
vector allocation snapshot after applying DLFM is depicted in
Figure 3

V. OUR APPROACH
A. Overview

Starting with a uniform structure, the dynamic length fac-
torization machines (DLFM) algorithm optimizes the user
vector structure by testing and applying small changes to it
every tuning cycle (i.e., 3 hours). In practice, the algorithm
can remove and/or add up to N vector entries per tuning
cycle, where NV is a system parameter. Each such change is
automatically tested and evaluated before being applied to the
model.

To evaluate which entries can be removed or added to
the model, DLFM uses two main components. The first
component analyzes the user and ad vectors during training,
and evaluates which entries can potentially be removed, i.e.,
which blocks can be shortened. The second component trains
potential extensions for each of the blocks, and evaluate the
benefit of adding the extensions to the model, i.e., expanding
a block.

To execute these two components, we take advantage of
the map-reduce architecture of OFFSET, which allows training
hundreds of models in parallel. Originally, the system was
designed to train multiple versions of the learning model in
parallel, each one with a different set of hyper-parameters [2].
At the end of each tuning cycle, all of the models are evaluated
and the best resulting model is selected. Then, the system
virtually duplicates the best performing model and resuming
its training with multiple new hyper-parameter sets.

We support DLFM by adding to each hyper-parameter
tuning cycle several new models, each one of them with
a slightly different structure, and train them alongside the
different hyper-parameter sets models. If one of these models
achieves the best results, the training during the next cycle will
continue from this model structure, with new generated vari-
ations of its hyper-parameters, and new generated variations
of its user vector structure. The DLFM models tested in each
cycle differ in the number of changed entries (1 to n) and the
operation applied (i.e., entry addition or entry removal). As a
safety mechanism, we also keep the last 10 best performing
models and train them with a fixed user vector structure and a
fixed hyper-parameter set. These models are evaluated with the
others at the end of each tuning cycle and can be chosen as the
best model. This allows us to “revert” the changes being made
to the user vector structure if they do not prove themselves
over time (e.g., they cause their models to diverge®).

B. Entry Removal Component

The entry removal component is responsible for identifying
entries that potentially can be removed from the model. To
identify these entries, we are using heuristics to evaluate the
model’s performance operating without each of its entries. The
pCTR of an event given user v and an ad a is defined in
Section I as pCTR(u,a) = o(b+vLv,) , where v, v, € RP

SWe declare model divergence if the absolute value of one of its vectors’
entries exceeds a predefined threshold.

denote the user and ad latent factor vectors of the event. Based
on this equation we define

pCTR_i(u,a) = o(b+viv, —

Vy; - Vai)

as the pCTR of the event without the ¢th entry of vectors v,
and v,. Respectively, we define the loss function without the
ith entry as

L_i(u,a,y) = —(1-y)log (1 - pCTR_;(u,a))
A 2
—ylogpCTR_;(u,a) + 5 9;9 0° ,

We can now define the accumulative loss without the ith entry
over the entire training data set 7 as

Z ﬁ—i(ua avy))

(w,a,y) €T

Etotal,i =

This value represents the loss of a hypothetical model that
does not contain the ith entry of the vectors, and in which the
block of the features that correspond to this entry is shorten.
At the end of each tuning cycle the entries for which Liotar_,
is the lowest are considered for removal.

C. Entry Generation Component

Deciding which feature the model needs to expand is a
more complicated task than deciding which entry to remove.
It is not clear how to evaluate in advance the outcomes of a
possible change. Moreover, even if it is clear which feature to
expand, what should be the initial values of the new entries?
If the algorithm initializes the entries with small random
values, it would take a lot of time for them to converge and
become beneficial. To solve these two problems we designed
the Greenhouse - an independent unit that trains alongside the
model and “grows” sets of potential extra entries - one set
for each block, i.e., one for each feature and for each pair of
features, a total of ((g) + F) “incubated” entry sets. Each
such entry set includes one entry per each feature value and
each ad feature®. An illustration of the Greenhouse for a toy
model example, is given in Figure 4.

Each entry set in the Greenhouse is trained as if it’s part
of the model, and its potential contribution to the model
performance is measured. For each Greenhouse entry set j
we define

pCTRy;(u,a) =o(b+ viv, + Vu; " Va,)

as the pCTR of the event with the Greenhouse jth entry.
Respectively, we define the loss function with the Greenhouse
jth entry as

Lij(u,a,y) =—(1—y)log (1 —pCTRy;(u,a))

A
—ylogpCTR..; - 62
ylogpCTRy;(u,a) + 3 6;) :

6 Assuming all block are of length k the Greenhouse actually increases the
model size by a factor of (k + 1)/k.

gender hour advertiser campaign

famale male wnknown 00 01 2 6 e P
genderxhour entry
gender entry
hour entry

\ J \ J
Y Y
user features ad features

Fig. 4: Example of the Greenhouse entries for a toy model
with 2 user features - gender and hour, and 2 ad features
- advertiser and campaign. Each entry extends one of the
user vector blocks. In this case, since there are only two user
features (F' = 2), we have only 3 entries in the Greenhouse.

Since in the generation component we are not only analyzing
but also training new potential entries, the gradient of £ is
being used for training the jth entry using SGD as described
in Section II. As before, we also define the accumulative loss
with the Greenhouse jth entry over the entire training data set

T as
Z £+j (u7a,y) 5

(w,a,9)€T

£t0t(ll+]‘ =

This value represents the loss of a hypothetical model that
includes the jth entry set of the Greenhouse, and in which
the block of the features that corresponds to this entry set
is expanded. At the end of each tuning cycle the entry set
for which Lioiar +,; 1s the lowest is considered to be added
to the model. In case one of the Greenhouse entry set was
added to the model, the latent vectors of all of the values of
the corresponding features are expanded, and their additional
values are copied from the Greenhouse. Then, the algorithm
initializes the Greenhouse entry parameters, and “grows” it
again from “scratch” for future use. Intuitively, the Greenhouse
performs as an oracle, suggesting new mature values that
are guaranteed to contribute to the model and improve its
prediction accuracy.

D. Generating DLFM models

While the entry removal and entry generation components
are being updated during each model training cycle, at each
hyper-parameter tuning cycle three potential DLFM model
types are considered:

« Removal model - a model with at least one less entry.

o Addition model - a model with at least one additional
entry.

« Replacement model - a model that extends the size of
one or more features at the expense of others.

Given a system parameter /N, which dictates the maximal
number of allowed simultaneous changes, we create 3N hy-
pothetical models for evaluation, /N of each type. (a) Removal
model ¢ € [1, N] that would remove the ¢ worst model entries,
as predicted by the entry removal component; (b) Addition
model ¢ € [1, N] that would add the ¢ best Greenhouse entries,
as predicted by the entry generation component; and (c)

Replacement model ¢ € [1, N] that would do both - replace ¢
old entries with £ new ones - as predicted by the entry removal
and entry generation components. It is worth mentioning, that
the length of the user vector is always bounded from above
by its original uniform length D. Hence, an Addition model
that suggests a user vector larger than D would be excluded
from the list of potential models.

E. Resources

There are two aspects to consider regarding DLFM influence
on system resources - the backend additional resources during
training, and the frontend (or serving system) resources during
serving. As mentioned earlier, we are less sensitive to re-
sources surge during training, and highly sensitive to resources
surge in serving time. However, since our serving system is
oblivious to the DLFM algorithm any additional resources are
needed for backend model training purposes only.

a) Training Resources: For brevity and readability rea-
sons, in the following discussion, we assume that all feature
blocks are of k£ dimensions. For each training cycle, the entry
removal component performs O(D) = O((g) + F) - k)
additional operations in order to analyse the contribution of
each of the user vector entries. However, this calculation
can be performed in parallel to the regular model training,
and therefore will not increase latency. The entry generation
component requires both additional memory and processing
time. Since the entry generation unit holds an entry set per
each feature and each feature pair, the number of entry sets in
the component is O((%) + F), which is 1/k of the original
uniform model size. The number of additional operations is
also O((g) + F') as we train and analyze each of the entries
set per event’.

Note that the algorithm components increase the memory
and processing time on one hand, however, reduction of the
model size decreases those resources on the other. Therefore, it
is hard to evaluate the additional resources as it highly depends
on the features the algorithm chooses to expand - for example,
removing five entries of feature that has 3 values each, and
adding 1 entry to a feature that has 100 values, eventually
increases the memory size and vice versa.

b) Serving: According to Section II-C, the resulting
model used by the serving system contains only the user
feature vectors and ad features vectors. Let |V| be the total
number of vectors in the model, then the size of the model
is given by O(D - |V|). After applying DLFM, the new
length of the model is D < D, and therefore the memory
consumption would be reduced by f)/D. From processing
resources perspective, for each auction (one for each incoming
impression), a vector of size D would be constructed for the
user and for each of the eligible ads. Then, in order to rank the
ads, each of the ad vectors is multiplied (i.e., dot product) by
the user vector. Each of these tasks requires O(D) operations.
Therefore, the reduction of the model’s vector sizes to D
would reduce the processing resources by D /D as well.

"The exact number of additional operations and memory depends on the
number of values of the user and ad features.

VI. PERFORMANCE EVALUATION

In this section we report the offline and online performance
of a DLFM enhanced OFFSET model. For both cases we de-
scribe the setting, define the performance metrics, and present
the results. Since proprietary logged data is used for evaluating
our model, it is obvious that reproducing the results by others
is impossible. This caveat is common in papers describing
commercial systems and we hope it does not undermine the
overall contribution of this work.

A. Offline Evaluation

a) Setup: To evaluate offline performance we train two
OFFSET models, one using DLFM to dynamically optimize the
user vector structure as described in Section V and the other
with a uniform user vector structure, serving as baseline. We
train both models from “scratch” where all model parameters
are randomly initialized, over several months of Gemini native
logged data, which include many billions of impressions.

We use both sAUC and LogLoss metrics (defined next), to
measure offline performance, where each impression is used
for training the system after being applied to the performance
metrics. OFFSET hyper-parameters, such as SGD step size and
regularization coefficient, are determined automatically by the
adaptive online tuning mechanism [2].

b) Performance metrics:

Area-under ROC curve (AUC) The AUC specifies the
probability that, given two random events (one positive and
one negative, e.g., click and skip), their predicted pairwise
ranking is correct [14].

Stratified AUC (sAUC) The weighted average (by number
of positive event, e.g., number of clicks) of the AUC of each
Yahoo Gemini section®. This metric is used since different
sections have different prior CTR bias and therefore even using
the section feature alone turns out as sufficient for achieving
high AUC values.

Logistic loss (LogLoss)

> —ylpCTR(u,a) — (1 - y)In (1 - pCTR(u,a)),
(u,a,y)€T

where 7 is a training set and y € {0,1} is the positive
event indicator (e.g., click or skip). We note that the LogLoss
metric is used to optimize OFFSET model parameters and its
algorithm hyper-parameters.

¢) Results: The daily LogLoss and sAUC lifts of the
DLFM model over the baseline are plotted vs. time in Figure 5
, over a period of 4 months. On average, over the last 2 weeks,
the DLFM model showed 0.38% LogLoss lift® and 0.35%
sAuc lift'® over the baseline. Since the evaluation is done
over billions of impressions, the results are surely statistically
significant.

8 A section is a group of similar web pages (or sites) on Yahoo O&O and
third parties’ properties, such as Yahoo! desktop Sports pages, or a specific
mobile app such as Yahoo! weather for Android Smartphones.

9Since lower-is-better with the LogLoss metric, the lift is given by (1 —
LogLosspr,rMm /LogLosspaseline) - 100.

10Since higher-is-better with the SAUC metric, the lift is given by
(sAUCpLrM/SAUChascline — 1) - 100.

08 T T T T T
—e— LogLoss

—e— SAUC

0.6

0.4

Lift [%]

0.2

|

0 20 40 60 80
Time [days]

|
100

Fig. 5: Offline LogLoss and stratified AUC (sAUC) lifts of
DLFM model over the baseline model vs. time.

B. Online Evaluation

a) Setup: To evaluate the online performance that deter-
mines whether the DLFM algorithm is pushed into the produc-
tion system, we launched an online bucket serving a portion
of Yahoo Gemini native traffic and measured the revenue lift
in terms of the average cost per thousand impressions (CPM)
with respect to the production model. It is noted that since
bucket sizes are practically equal after proper normalization,
CPM lift is actually revenue lift.

b) Results: The daily CPM lifts of the DLFM bucket
when compared to the baseline bucket are presented in Figure
6. On average the online DLFM bucket showed 1.46% CPM
lift and 2.15% CTR lift''. Such a CPM (or revenue) lift
translates to many millions of USD in yearly revenue once
the solution is deployed to all traffic. CTR improvement is
impressive and stems from the improved model accuracy
demonstrated by the offline evaluation. As with the offline
results, the results here are also statistically significant since
evaluation is done over many billions of impressions.

4 T T T L - I

Lift [%]

Time [days]

Fig. 6: Online CPM and CTR lifts of DLFM bucket over the
production bucket vs. time.

Since higher-is-better with CPM and CTR metrics, the lifts are calculated
as the sAUC lift.

VII. IMPACT

Since integrated into production, DLFM has reduced the
total size of the model by 25%. Starting with a uniform vector
allocation, where each block is of size k and a total vector size
of several hundred entries, the algorithm has continuously re-
moved, added, and replaced the user vector entries optimizing
the performance with each tuning cycle. In Table I we present
a snapshot of the the user vector allocation taken from the
production model several months after deploying DLFM. The
model contains several types of features (a) straight forward
features such as age, gender, and geo; (b) contextual features
such as page section'?; (c) user behavioural features that
represents the user’s previous interactions; and (d) user interest
features that represents the user’s interests on various domains
(such as search and news). Each table entry a; ; represents the
ratio between the original size of block (i,7), i.e., k, to its
current length, where values smaller than 1, indicate that the
block was shortened and values greater than one indicate the
opposite. Examining the table it is clear that the user vector
has gone through many changes reaching its current structure.
Moreover, the page section feature holds the largest share of
the user vector entries, which indicates its complexity (it has
a few thousand values) and significance. This is not a surprise
since other feature selection methods have already indicated
its importance. It is also interesting to see that several of
the blocks were reduced to zero, meaning that the interaction
between the features did not contribute to the model prediction,
nor improve its prediction accuracy.

VIII. ApPLYING DLFM ON FFM

FFM has been proven recently to be among the best ad click
prediction algorithms [19][18]. This is due to their explicit
modeling of the different interactions between the model
features. In the sequel we adopt the notation of [19] and show
that DLFM may be applied to FM-like algorithms such as
FFM. As mentioned before, FFM does not treat the ad side
differently, and its score is a sum of multiplications of feature
pairs vectors. Hence, DLFM can optimize FFM by applying
the entry removal and entry generation components on each
pair. In the sequel we provide a formal description of this
notion.

Given a data set with n feature values, and an event (z,y)
where z is an n-dimensional vector indicates the event feature
values, and y is the label, the pCTR is given by pCTR(z) =
o(¢rrm(w,z)) €]0,1], and

Z Z wjl»fz Wys, fl)le Ly)

Ji=1j2=51+1

orrm(w,)

where j; represents a value of feature fi, and jo represents
a value of feature f. In addition, wj, s, is one of the latent
vectors of feature f; that interacts with feature fo, and wy, y, is
one of the latent vectors of feature f5 that interacts with feature
f1. For example, consider a model with 3 features - gender

12A unique page (or site) identifier on Yahoo O&O and third parties’
properties with tens of thousands of distinct values.

(G), hour (H), and advertiser (A). In this case ¢ppy(w,x)
may be

Wfemale, H * W03,G + Wfemale, A - WNike,G T W03,A - WNike,H -

To avoid using feature values, we use w(z)y, to denote the
specific value of feature f;, which was used during the event
(z,y). Using this notation we can rewrite (2)

-y Y w

11=11i0=%1+1

¢rrm(w,x) w(x) sy, g 5 (3)

f71 fL2
where I is the number of features (or fields - adhering to the
notation of [19]). Going back to our example, ¢ppps(w,)
would become

w(r)g,mw(®)petw(@)eaw(®)actw(®)gaw(T) Nike, 1 -

Using the same terms we used for describing OFFSET, we
interpret the expression w(x)y, r, ~w(x)s,, f,, as the “block”
of features f;,, fi, - a multiplication of two latent vectors of
size k;, i,, (at the beginning k;, ;, = k, Viq,42). We are now
ready to define ¢pppr(w,x) without the [th element of block
fi1 X fiz by

(z)FFM(wa x)—(i17i27l) =

orrv(w,) —w(z)g £y,

(@) fiy firy s @
where | € [1,k;, 4], and ,k;, ;, is the current length of
block fi, x fi,. Using (4) we can calculate and aggregate
the loss of the model without each of its elements - entry
removal component. The entry generation component can be
implemented in a similar way - we can train an extension
W(w)y, f,, W(T)g,, ;, for each block fi, x fi,, and evaluate
the performance of the extension using

¢FFM(W,IE)+(¢1,12) =

prrm(w, o) +0(2) iy D) g1y i) s

Applying these two components we can optimize any FFM by
DLFM as we optimized OFFSET.

IX. EDUCATED MODEL INITIALIZATION

One of the main properties of an iterative machine learning
algorithm is its convergence rate. In our work cycle it also
dictates the time between a new idea to a functional production
model. However, as new features are added to the model,
the model size is growing as well as the convergence time.
Recently, it has been taking several weeks worth of logged
data for a model to converge, which translates to several days
in real time. Testing new features and new algorithm improve-
ments became a slow process, and the production throughput
decreases. To overcome this drawback and to accelerate the
algorithm convergence rate, we are taking advantage of DLFM
abilities. As a new model is usually an improved versions
of the previous one, we can exploit the data kept in the
last model to initialize the new model, instead of initializing
it with random values and start training from “scratch”. In
this scenario, we first inherit the previous model user vector

F 08 ¥ 8 ¥ ¢ 3 % 5 | % *) I
54 52 58 58 58 5% 54 54 5 | 882 |54 |58 |2 |54 5¢
Feature 28 28 35 25 25 58 58 38 5 | &Y |88 |£5% |5 |58 8¢
4 2 4§ 4 4§ & F E 1A E 3 =

o0 i) £ £
user interests #1 0.14| 1.00| 1.00| 1.00| 0.86| 1.00| 1.00| 0.29| 0.57| 0.57| 0.71| 0.29| 0.29| 1.00| 0.57| 1.00| 1.00| 1.00
user interests #2 0.14| 1.00| 0.86| 1.00| 1.00| 0.57| 0.14| 0.00| 1.43| 0.71| 1.00| 0.43| 0.57| 0.57| 0.57| 0.43| 1.00
user behaviour #1 0.14| 1.71 1.00| 1.14| 0.71| 0.71 1.29] 1.71] 043]| 1.29] 0.86| 1.00| 1.29] 1.86
user behaviour #2 0.14] 0.86| 0.86] 1.00] 0.71] 0.00[1.00| 0.14| 1.14] 0.00] 0.86| 0.43] 0.43| 0.71] 1.00
user behaviour #3 0.14| 0.86| 1.14| 0.14| 0.00 1.00| 1.14| 0.00| 0.57| 0.43| 0.43| 0.00| 0.71
user interests #3 0.71] 0.71] 0.86| 0.86| 1.00| 0.86| 1.00| 0.86| 0.86| 0.86| 0.86| 0.86| 0.86
user interests #4 0.00| 0.43] 0.00| 1.57| 0.71| 0.86| 0.43| 0.71| 0.29]| 0.29| 0.29| 0.71
user interests #5 0.14| 0.14| 1.14| 0.14| 1.14] 0.00| 0.14| 0.14| 0.14| 0.86| 0.71
hour 0.00| 1.00| 0.00| 0.43| 0.29| 0.29| 0.14| 0.00| 0.29| 0.00
page section 0.14| 0.57 1.57] 1.57| 1.57| 143] 1.57
publisher 0.00| 0.86| 0.57| 0.29| 0.57| 0.00| 0.14| 0.57
user interests #6 0.14] 0.71| 1.00| 1.00| 0.71| 1.00| 1.00
state 0.14] 0.00| 0.00| 0.00| 0.00| 0.14
user behaviour #4 0.00| 0.29| 0.57| 0.43| 0.57
age 0.14] 0.29| 0.29| 0.71
gender 0.14| 0.86| 0.86
user interests #7 0.14| 143
user interests #8 0.14

TABLE I: User vector normalized feature-allocation, several
colors indicate higher values.

allocation - keeping the proportions between the two models’
mutual features. Then, the new model’s latent vectors are
initialized with the values of the previous one. In case the
new block sizes are smaller than the original block size,
the entry removal component is used to determine the most
valuable entries of each block that should be copied to the new
model. We note that while incremental training is standard in
recommendation systems (see [22] for MF-CF models, and
[28] for deep models), our EMI enables adding (or removing)
features to (from) the new incremental model, by using the
DLFM mechanisms (see Sections V-C and V-B).

a) Results: To test the educated model initialization
(EMI) mechanism, we used two “mature”” models, M7, having
11 user features, and M5 having an additional user feature.
Then, we created two new models Mis_scraten and Mio_gar
both having 12 user features as model Mio. Mi2—serateh Was
trained from “scratch”, while Mi5_ gasr was initialized based
on model M7, using EMI. The convergence time of the models
was evaluated by comparing their offline results to the offline
results of model Mo - the baseline. In Figure 7 we present
the offline LogLoss lifts of the two models over M;s. After
30 days, the model starting from “scratch” Mis_gcraten Still
does not meet model M75’s results, while the model initialized
with EMI Mjs_ garr not only meets, but exceeds the result in
less then 4 days worth of data. A summary of the experiment
results can be found in Table II. We ran additional experiments,
using different settings - increasing/decreasing the model size,
adding/removing user features, as well as the combination of
the above, and in all the experiments the EMI have reduced
the training time by more than 90%.

X. CONCLUSIONS AND FUTURE WORK

OFFSET is a user-less model, where a user is represented
by its features ,i.e., the user LFV is a combination of the

months after deploying DLFM into production, where darker

0% 0.15%

30 Days
and counting...

%

(a) A model training from “scratch”

(b) A model initialized with EMI

Fig. 7: Offline LogLoss lifts of the two models over the
baseline. The brown circles indicate negative lifts, while the
green circles indicates positive lifts. The circles sizes are
proportional to the number of impressions used to evaluate
the presented lifts.

user features LFV’s. Clearly, different user features possess
different informative value, therefore an accurate and delicate
construction of the user vector may be highly beneficial. In
this paper we described the implementation of such a dynamic
approach named DLFM, where during each training cycle

[Feature [[from “scratch” | using EMI |
convergence
nominal time 45 days 4 days
convergence more than 2 weeks 2 days
real time
initial LogLoss
over baseline —6% —0.8%

TABLE II: A comparison between a model training from
“scratch” (model parameters are initialized by random values)
and a model initialized with the educated model initialization
(EMI) algorithm.

we train and evaluate several models, each using a slightly
different vector allocation. The new user vector allocation is
generated using metrics we design in order to detect “weak”
entries we would like to remove, and “deprived” features
we would like to enhance. Offline and online evaluations
demonstrated the benefit of DLFM over the uniform user
vector structure that has been used so far. In addition, the
user vector structure, which every model outputs after each
training cycle, can be of great interest by itself, as it reveals
the balance between user features, and can play a significant
role in the evaluation of existing and potential user features.
Moreover, leveraging the DLFM functionality for developing
a new initialization mechanism yielded a great reduction in
training time. In particular, the EMI reduces the training
time by more than 90%, providing a quick and easy way to
apply changes to the production model, and hence significantly
improving the productivity of the research team supporting the
modeling processes.

REFERENCES

[11] M. Aharon, N. Aizenberg, E. Bortnikov, R. Lempel, R. Adadi, T.
Benyamini, L. Levin, R. Roth, and O. Serfaty. Off-set: one-pass
factorization of feature sets for online recommendation in persistent cold

start settings. In Proc. RecSys’2013.

[2] M. Aharon, A. Kagian, and O. Somekh. Adaptive online hyper-

parameters tuning for ad event-prediction models. In Proc. WWW’2017

Companion.
[3] M. Aharon, Y. Kaplan, R. Levy, O. Somekh, A. Blanc, N. Eshel, A.

Shahar, A. Singer, and A. Zlotnik. Soft frequency capping for improved
ad click prediction in yahoo gemini native. In Proc. CIKM’2019.

[4] N. Aizenberg, Y. Koren, and O. Somekh. Build your own music
recommender by modeling internet radio streams. In Proc. WWW’2012.

[5] O. Anava, S. Golan, N. Golbandi, Z. Karnin, R. Lempel, O. Rokhlenko,
and O. Somekh. Budget-constrained item cold-start handling in collabo-
rative filtering recommenders via optimal design. In Proc. WWW’2015.

[6] M. Arian, E. Abutbul, M. Aharon, Y. Koren, O. Somekh, and R. Stram.
Feature enhancement via user similarities networks for improved click
prediction in yahoo gemini native. In Proc. CIKM’2019.

[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]
[20]
[21]

(22]

(23]

[24]

[25]

[26]
(27]
[28]

[29]

R. M Bell and Y. Koren. Lessons from the netflix prize challenge. Acm
SIGKDD Explorations Newsletter, 9(2):75-79, 2007.

W. Cheng, Y. Shen, and L. Huang. Differentiable neural input search
for recommender systems. arXiv preprint arXiv:2006.04466, 2020.

D. Cohen, M. Aharon, Y. Koren, O. Somekh, and R. Nissim. Expediting
exploration by attribute-to-feature mapping for cold-start recommenda-
tions. In Proc. RecSys’2017.

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107-113, 2008.

D. Drachsler-Cohen, O. Somekh, S. Golan, M. Aharon, O. Anava, and
N. Avigdor-Elgrabli. ExcUseMe: asking users to help in item cold-start

recommendations. Proc. RecSys’2015.

J. Duchi, E. Hazanm&ng%Adaptive subgradient methods for
online learning and stochastic optimization. The Journal of Machine
Learning Research, pages 2121-2159, 2011.

B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and
the generalized second-price auction: Selling billions of dollars worth
of keywords. American economic review, 97(1):242-259, 2007.

T. Fawcett. An introduction to ROC analysis. Pattern recognition letters,
27(8):861-874, 2006.

X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.S. Chua.
collaborative filtering. In Proc. WWW’2017.

X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R.
Herbrich, S. Bowers, et al. Practical lessons from predicting clicks on
ads at facebook. In Proc. of the Eighth International Workshop on Data
Mining for Online Advertising, 2014.

M. R. Joglekar, C. Li, M. Chen, T. Xu, X. Wang, J.K. Adams, P. Khaitan,
J. Liu, and Q.V. Le. Neural input search for large scale recommendation
models. In Proc. KDD’2020.

Y. Juan, D. Lefortier, and O. Chapelle. Field-aware factorization ma-
chines in a real-world online advertising system. In Proc. WWW’2017
Companion.

Y.Juan, Y. Zhuang, W.S. Chin, and C.J. Lin. Field-aware factorization
machines for ctr prediction. In Proc. RecSys’2016.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30-37, 2009.

C. Li, Y. Lu, Q. Mei, D. Wang, and S. Pandey. Click-through prediction
for advertising in twitter timeline. In Proc. KDD’2015.

X. Luo, Y. Xia, and Q. Zhu. Incremental collaborative filtering rec-
ommender based on regularized matrix factorization. Knowledge-Based
Systems, 27:271-280, 2012.

B. McMahan. Follow-the-regularized-leader and mirror descent: Equiv-
alence theorems and 11 regularization. In Proc. of the International
Conference on Artificial Intelligence and Statistics, 2011.

H.B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L.
Nie, T. Phillips, E. Davydov, D. Golovin, et al. Ad click prediction: a
view from the trenches. In Proc. KDD’2013.

J. Pan, J. Xu, A.L. Ruiz, W. Zhao, S. Pan, Y. Sun, and Q. Lu. Field-
weighted factorization machines for click-through rate prediction in
display advertising. In Proc. WWW’2018.

S. Rendle. Factorization machines. In Proc. IEEE International
Conference on Data Mining, 2010.

Y.Sun, J. Pan, A. Zhang, and A. Flores. FM?2: Field-matrixed factor-
ization machines for recommender systems. In Proc. WWW’2011.

Y. Wang, H. Guo, R. Tang, Z. Liu, and X. He. A practical incremental
method to train deep ctr models. arXiv preprint arXiv:2009.02147, 2020.
X. Zhao, C. Wang, M. Chen, X. Zheng, X. Liu, and J. Tang. Autoemb:
Automated embedding dimensionality search in streaming recommen-
dations. arXiv preprint arXiv:2002.11252, 2020.

Neural

